

2023届高考北京专家信息卷·仿真模拟卷(三)3理科数学试题答案,目前大联考答案网已经汇总了2023届高考北京专家信息卷·仿真模拟卷(三)3理科数学试题答案的各科答案和试卷,更多全国100所名校答案请关注本网站。
11.【解题分析】(1).A AD1=A-AD1,∴.A AD12=AB-AD12,∴.Ai·AD=0,∴.AB⊥AD,.AC=√AB2 BC=23.(2)在Rt△ABC中,由AB=√3,BC=3可得∠BAC=60°.C由(1)可知AB⊥AD,以AB,AD所在的直线分别为x轴,y轴,建立如图所示的平面直角坐标系,则A(0,0),B(√3,0),D(0,3),所以AB=(3,0),A万=(0,3),设∠BAP=0.AB①当0°≤60时,则有P(√3,w3tan0),AP=xAB yAD,W3x=√3∴.(3,√3tan0)=x(W3,0) y(0,3)=(W3x,3y),.,即3y=√3tan0x=13 tan 0∴z )-1 9am0.0<0≤60∴0≤am01<1 号am02.即x十y的取值范围为[1,2].②当60°<090时,则有P(3tan(90°-0),3),.Ap=xAB yAD,∴.(3tan(90°-0),3)=x(W3,0) y(0,3)=(W3x,3y),3x=3tam90-》,即7y3tan90-x 3y=3an(90°-9) 1,3y=3y=1,60°<90°,.0°≤90°-030°,.1≤√3tan(90°-0) 1<2,即x十y的取值范围为[1,2).综上,x十y的取值范围为[1,2],
10.【解题分析】(1)cos Acos B sin Bcos A cos Bsin Atan Atan Bsin Asin Bsin Asin Bsin(B-A)sin Csin Asin Bsin Asin B2-2,所以mA-号又因为0A<3所以A等或(2)因为△ABC为锐角三角形,故由(1)可知A=3,由正弦定理可得b=4sinA'snB=2snB.c=A·sinC=2sinC,所以 e=2(sin B sin C)=2[sin B sin(A B)]=2[sin B sin (B)]=2/3sin(B ).0