石室金匮 2024届高考专家联测卷(三)理数试题

作者: 来源:全国大联考 2024-01-01 11:28:05  阅读:57次

石室金匮 2024届高考专家联测卷(三)理数试题正在持续更新,本期全国大联考为大家整理了相关试题及答案,供大家查缺补漏,高效提升成绩。

本文从以下几个角度介绍。

    1、石室金匮高考专家联测卷2024四
    2、2024石室金匮高考专家联测卷(六)
    3、2023-2024石室金匮高考专家联测卷3
    4、石室金匮高考专家联测卷2024二理综
    5、石室金匮高考专家联测卷2024理综答案
    6、2023-2024石室金匮高考专家联测卷四
    7、2024石室金匮高考专家联测卷二
    8、石室金匮2024高考专家联测卷
    9、石室金匮2024高考专家联测卷三
    10、石室金匮高考专家联测卷2024
单元卷2十中≤专所以m≥号即可,故(x)=在[2,3)上是增函数.对于奇函数f(x)有f(0)=0,f(2)=f(2一2)=f(0)=0,故当x∈(0,1)时,+x十是“F函数”;对于⑤,由f(x)是定义在f(x)f(0)=0,当x∈(2,3)时,R上的奇函数,得f(0)=0,取x1=x,x2=0,则f(x)>f(2)=0,方程f(x)=-1在[0,1)上有实|f(x)-f(0)|≤2|x-0|,即f(x)|≤2|x|恒成数根,则这实数根是唯一的,因为f(x)在(0,1)上立,所以m≥2即可,故f(x)是“F函数”.综上,“F是单调函数,由于f(2一x)=f(x),故方程f(x)=函数”的个数为3.故选B项.一1在(1,2)上有唯一实数根.在(一1,0)和(2,3)上二、填空题f(x)>0,则方程f(x)=-1在(-1,0)和(2,3)上13.(2.5,3)【解析】令f(x)=1gx-3+x,其在定义没有实数根,从而方程f(x)=一1在一个周期内有域上单调递增,且f(2)=lg2-1<0,f(3)=1g3>且仅有两个实数根.当x∈[一1,3]时,方程f(x)=0,f(2.5)=lg2.5-0.5=1g√6.25-lg√10<0,一1的两实数根之和为2,当x∈[一1,7]时,方程由f(2.5)·f(3)<0知根所在区间为(2.5,3).f(x)=一1的所有四个实数根之和为2+10=12.14.(一∞,0)【解析】y=f(x)与y=g(x)的图像没有三、解答题交点,即方程f(x)=g(x)无解,即方程x2+|x|十17.解:(1)由f(0)=2得c=2,1十1-1=m无解,因为2+|x++-1=又f(x+1)-f(x)=2x-1,得a(x+1)2+b(x十1)+2-(ax2+bx+2)=2x-1,x+1+中+-2≥22+0…+1即2ax十a+b=2x-1,所以2a=2,a十b=-1,1解得a=1,b=-2,|x-2=|x≥0,当且仅当x2+1=x2+1'即x=所以f(x)=x2-2x十2.(3分)|x=0,(2)f(x)=x2一2x+2的对称轴为直线x=1,0时等号成立,x2+x十十.1一1=m无解,所以所以f(1)=1-2+2=1,f(-1)=(-1)2-2×(-1)+2=5,f(2)=22-2×2+2=2,m<0.所以f(x)min=f(1)=1,f(x)max=f(-1)=5.15.(0,16)【解析】y=x2+2bx+c=(x+b)2+c-b(6分)的对称轴为直线x=一b,因为函数y=x2+2bx十c(3)g(x)=x2-(2+m)x+2,在区间(1,5)上有两个不同的零点,所以若g(x)有2个零点分别在区间(一1,2)和(2,4)内,1<-b<5,-50,5十m>0,△=4b2-4c>0,可得c0,、f(1)+f(5)>0,g(4)>0,10-4m>0,f(5)=25+10b+c>0,以f(1)+f(5)=1+2b+c+25+10b+c=26+所以实数m的取值范围为(1,号))(10分)12b+2c<26+12b+2b2=2(b+3)2+8,因为-5<18.解:(1)当40≤x≤60时,令y=x十b,b<-1,所以2(b+3)2+8<16,即f(1)+f(5)<40k十b=4,16,综上,0